RENAISSANCE ASTRONOMY

Questions

How do scientists choose between competing theories?

Let's stretch our minds! - How big is the Universe?

Nicholas Copernicus

Nicholas Copernicus

[1473-1543, Poland]
Trained in law and medicine, but his interest was in math and astronomy. He developed the heliocentric (Suncentered) model, and he published his results in the De Revolutionibus.

Postulates include: (a) the Universe is spherical and (b) motions of objects were combinations of uniform circular motion.

Observations \& Results

A. Reasoned that the apparent rotation of the Celestial Sphere could be accounted for by assuming that the Earth rotated about a fixed axis while the Celestial Sphere was stationary.
B. Determined the Earth is 1 of 6 (then known) planets circling the Sun, in the order Mercury, Venus, Earth, Mars, Jupiter, and Saturn.
C. Recognized that objects nearer to the Sun had faster orbital speeds, which accounts for retrograde motions.
D. Computed the scale of the Solar System.

Inferior Planets

Inferior Conjunction

Inferior Planets

Inferior Conjunction

Inferior Planet Distance

At Greatest Elongation, the view from the Earth to the planet's orbit is a tangent line. Therefore, that angle is 90°. The angle from the Earth-Sun line to the Earthtangent line is observed. The Earth-Sun distance is 1 AU .

Example:

Average Distances

table 4-2	Average Distances of the Planets from the Sun	
Planet	Copernican value $\left(\mathbf{A U}^{*}\right)$	Modern value (AU)
Mercury	0.38	0.39
Venus	0.72	0.72
Earth	1.00	1.00
Mars	1.52	1.52
Jupiter	5.22	5.20
Saturn	9.07	9.54
Uranus	-	19.19
Neptune	-	30.06
Pluto	-	39.53

"1 $\mathrm{AU}=1$ astronomical unit $=$ average distance from the Earth to the Sun.

Superior Planets

Superior Planets

Superior Planet Distance

Need to know the Time it takes to go
 from point E (opposition) to point E^{\prime} (quadrature). Angles PSP' and ESE' are determined from Time. Earth-Sun distance is 1 AU .

Example:
If it takes 120 days to go from E to E^{\prime}, then angle ESE' $=120 / 365.25 \times 360^{\circ}$. Do the same for PSP' and compute the angle P'SE'. Then use the Law of Sines.

Example

Earth: $\quad \mathrm{P}=365.25$ days \quad Mars: $\quad \mathrm{S}=780$ days (Opp to Opp)
Observe that Opposition to Quadrature $=95$ days

Synodic Periods: Inferior Planets

Inferior Planets will make one more orbit than the Earth before they realign.
$1 \quad 1 \quad 1$
--- = --- + ---
P E S

P = planet's sidereal period
E = Earth's sidereal period
S = planet's synodic period

Synodic Periods: Superior Planets

The Earth will make one more orbit than the Superior Planets before they realign.

$$
\begin{array}{ccc}
1 & 1 & 1 \\
--- & --- & --- \\
P & E & S
\end{array}
$$

Example:
Jupiter

$\mathrm{S}=398.9$ days $=1.092$ years
$\mathrm{P}=$ planet's sidereal period
$1 / \mathrm{P}=1 / 1-1 / 1.092=0.084$
E = Earth's sidereal period
$\mathrm{S}=$ planet's synodic period
$\mathrm{P}=1 / 0.084=11.87$ years

Synodic \& Sidereal Periods

table 4-1 Synodic and Sidereal Periods of the Planets
Planet
Synodic period
Sidereal period
Mercury 116 days
584 days
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto
780 days
399 days
378 days
370 days
368 days
367 days
88 days
225 days
1.0 year
1.9 years
11.9 years
29.5 years
84.0 years
248.5 years

Retrograde Motion Explained

Observations \& Results

E. But because Copernicus used circular motion, he still needed epicycles for "details" of planetary motion.

The heliocentric model of Copernicus did not prove that the Earth revolves around the Sun. In fact, with some adjustments, the old Ptolemiac system could have accounted as well for the motions of the planets in the sky. But the Ptolemiac cosmology was clumsy and lacked the beauty and symmetry of its successor.

Copernicus made the Earth an astronomical body, which brought a kind of unity to the Universe. Also, his new cosmology had the revolutionary implication that the Earth was small, while the Universe was large.

