RENAISSANCE ASTRONOMY

Isaac Newton

Isaac Newton
[1642-1727, England]

Kepler discovered the rules that govern planetary orbits, and Galileo discovered laws that describe the behavior of falling bodies. Later, Isaac Newton unified these and other insights by showing that the force of gravitation that accelerates falling bodies near the Earth is the same force that keeps the Moon in its orbit around the Earth and the planets in their orbits about the Sun.

Three Laws of Motion

Every body continues in a state of rest, or of uniform motion in a straight line, unless it is compelled to change that state by forces impressed upon it.

$$
\text { (momentum } \mathrm{p}=\mathrm{mv})
$$

The change of motion is proportional to the force impressed, and it is made in the direction of the straight line in which that force acts.
(force $\mathrm{f}=\mathrm{ma}$)
To every action there is always an equal and opposite reaction; or, the mutual actions of two bodies upon each other are always equal and act in opposite directions.
(reaction)

Law of Gravity

Acceleration and Weight

$$
\mathrm{a}=\mathrm{G} \mathscr{M} / \mathrm{R}^{2}
$$

$$
\mathrm{W}=\mathrm{G} m \mathcal{M} / \mathrm{R}^{2}
$$

Examples

What is the new weight if the planet's mass increases by 4X?

$$
\mathrm{W}_{\text {new }} / \mathrm{W}_{\text {old }}=\left(4 \mathscr{M} / \mathrm{R}^{2}\right) /\left(\mathcal{M} / \mathrm{R}^{2}\right)=4
$$

What is the new weight if the planet's radius decreases by 4X?

$$
\mathrm{W}_{\text {new }} / \mathrm{W}_{\text {old }}=\left(\mathcal{M} /(\mathrm{R} / 4)^{2}\right) /\left(\mathcal{M} / \mathrm{R}^{2}\right)=16
$$

Kepler's Three Laws

1. All planets have elliptical orbits with the Sun at a focus.

Modification of Kepler's Laws

All orbiting bodies have a conic-section orbit, with the massive body (i.e., the Sun) at a focus.

Kepler's Three Laws

1. All planets have elliptical orbits with the Sun at a focus.

2. Law of Equal Areas: Equal areas are swept out in equal time intervals.

Modification of Kepler's Laws

Law of Equal Areas: Equal areas are swept out in equal time intervals. This is explained by Conservation of Angular Momentum.

$$
r_{1} v_{1}=r_{2} v_{2}
$$

Kepler's Second Law Interactive

Kepler's Three Laws

3. Harmonic Law (published in The Harmony of the Worlds):

$$
\mathbf{P}^{2}=\mathbf{k} \boldsymbol{a}^{3}
$$

where $\mathrm{k}=1$ if P is in earth years and a is in AUs.

table 4-3	A Demonstration of Kepler's Third Law		
Sidereal period			
\boldsymbol{P} (years)		\quad	Semimajor axis
:---:			
$\boldsymbol{a}(\mathrm{AU})$			

Modification of Kepler's Laws

The Third Law needs to have the sum of the masses included.

$$
(\mathscr{M}+m) \mathbf{P}^{2}=\mathbf{k} a^{3}
$$

where $\mathrm{k}=1$ if P is in earth years, a is in AUs, and $(\boldsymbol{\mathcal { M }}+\boldsymbol{m})$ is in solar masses.
For objects orbiting the Sun, $(\boldsymbol{M}+\boldsymbol{m})=1$.
Kepler's Third Law Interactive

Example

$$
\mathrm{P}=4.00 \text { days }(/ 365.25 \mathrm{~d} / \mathrm{yr})=0.01095 \mathrm{yr}
$$

$\mathrm{a}=16.26 \mathrm{R}_{\text {sun }}\left(\times 6.96 \times 10^{5} \mathrm{~km} / \mathrm{R}_{\text {sun }}\right)\left(/ 1.5 \times 10^{8} \mathrm{~km} / \mathrm{AU}\right)=0.07544 \mathrm{AU}$

$$
\left(\mathcal{M}_{1}+\mathcal{M}_{2}\right) \mathrm{P}^{2}=\mathrm{a}^{3}
$$

$$
\begin{gathered}
\left(\mathcal{M}_{1}+\mathcal{M}_{2}\right)=(0.07544)^{3} /(0.01095)^{2} \\
\left(\mathcal{M}_{1}+\mathcal{M}_{2}\right)=3.58 \mathscr{M}_{\text {sun }}
\end{gathered}
$$

Orbital Trajectories

Orbits
Function of Velocity
A: Elliptical
B: Elliptical
C: Circular
D: Elliptical
E: Parabolic
F: Hyperbolic

Orbital Positions

Nearest Positions:	Perihelion,	Perigee,	Periastron
Farthest Positions:	Aphelion,	Apogee,	Apastron

Escape Velocity

Escape Velocity Interactive

Geosynchronous Orbit

What is the distance from the center of the
Earth for a geosynchronous orbit?

$$
\begin{aligned}
\mathrm{P}= & (1 \text { day } / 365.25 \text { day } / \mathrm{yr}) \\
= & 2.74 \times 10^{-3} \mathrm{yr} \\
\mathcal{M}= & \mathcal{M}_{\text {earth }} / \mathscr{M}_{\text {sun }}=3 \times 10^{-6} \\
& (\mathcal{M}+m) \mathrm{P}^{2}=\mathrm{a}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{a} & =\left[\left(3 \times 10^{-6}\right)\left(2.74 \times 10^{-3} \mathrm{yr}\right)^{2}\right]^{1 / 3} \\
& =2.82 \times 10^{-4} \mathrm{AU} \times\left(1.5 \times 10^{8} \mathrm{~km} / \mathrm{AU}\right) \\
& =42,400 \mathrm{~km} \\
& =0.11 \text { Earth-Moon }=6.6 \text { earth radii }
\end{aligned}
$$

Least Energy Orbit

Trip Time
$(\mathcal{M}+m) \mathrm{P}^{2}=\mathrm{a}^{3}$
$\mathrm{a}=(1 \mathrm{AU}+0.72 \mathrm{AU}) / 2$
$\mathrm{P}^{2}=\mathrm{a}^{3}=(0.86)^{3}=0.636$
$\mathrm{P}=0.798 \mathrm{yr}$
$\mathrm{T}=\mathrm{P} / 2=0.399 \mathrm{yr}$
$=4.8$ months

Least Energy Orbit

$$
\begin{gathered}
\text { Trip Time } \\
(\mathcal{M}+m) \mathrm{P}^{2}=\mathrm{a}^{3} \\
\mathrm{a}=(1 \mathrm{AU}+1.52 \mathrm{AU}) / 2 \\
\mathrm{P}^{2}=\mathrm{a}^{3}=(1.26)^{3}=2.000 \\
\mathrm{P}=1.414 \mathrm{yr} \\
\mathrm{~T}=\mathrm{P} / 2=0.707 \mathrm{yr} \\
=8.5 \text { months }
\end{gathered}
$$

Tides

Tidal Forces

The nearest ball feels the greatest gravitational pull, so it moves the farthest. The middle ball feels the next greatest pull, but does not move as far.
The farthest ball feels the least pull, but it still moves some toward the planet.

Tidal Forces

From the perspective of the middle ball, the two outer balls move away by equal amounts of distance.

Tidal Distortion

Now let's consider the pull of the Moon on the Earth.

The nearest edge toward the Moon is pulled the most, the center somewhat, and the farthest edge just a little.

From the Earth's perspective, its shape is deformed into two bulges and two low regions.

Consequently, there are 2 high tides and 2 low tides daily.

Variations in Tides

The Principia

The Mathematical Principles of Natural Philosophy
(Principia)

PHILOSOPHI天
NATURALIS
PRINCIPIA
mathematica.

AUCTORE
ISAACO NEWTONO, EQAUR.
Fditio tertia aucta-\& emendata.
rasacus Newten El Iur Efm

rimeriant mant on

