

Example

P = 4.00 days (/ 365.25 d/yr) = 0.01095 yr $a = 16.26 \text{ R}_{\text{sun}} (\text{x } 6.96 \text{ x } 10^5 \text{ km/R}_{\text{sun}}) (/ 1.5 \text{ x } 10^8 \text{ km/AU}) = 0.07544 \text{ AU}$ $(\mathcal{M}_1 + \mathcal{M}_2) \text{ P}^2 = \text{a}^3$ $(\mathcal{M}_1 + \mathcal{M}_2) = (0.07544)^3 / (0.01095)^2$ $(\mathcal{M}_1 + \mathcal{M}_2) = 3.58 \mathcal{M}_{\text{sun}}$

Geosynchronous Orbit

What is the distance from the center of the Earth for a geosynchronous orbit?

$$P = (1 \text{ day} / 365.25 \text{ day/yr})$$

= 2.74 x 10⁻³ yr

$$\mathcal{M} = \mathcal{M}_{earth} / \mathcal{M}_{sun} = 3 \ge 10^{-6}$$

$$(\mathcal{M}+m) \mathbf{P}^2 = \mathbf{a}^3$$

a =
$$[(3 \times 10^{-6}) (2.74 \times 10^{-3} \text{ yr})^2]^{1/3}$$

= 2.82 x 10⁻⁴ AU x (1.5 x 10⁸ km/AU)
= 42,400 km
= 0.11 Earth-Moon = 6.6 earth radii

<section-header><image><text>

Tidal Distortion

Now let's consider the pull of the Moon on the Earth.

The nearest edge toward the Moon is pulled the most, the center somewhat, and the farthest edge just a little.

From the Earth's perspective, its shape is deformed into two bulges and two low regions.

Consequently, there are 2 high tides and 2 low tides daily.

