Telescopes

Lowell 24-inch Telescope

Keck 10-m Telescope

Manipulate Light

In order for a telescope to be advantageous, it must manipulate light in a way that is beneficial to the observer. Optimal designs give the observer

- (1) a magnified view (so that it appears closer),
- (2) a brighter view (of the dim object), and
- (3) a higher-resolution view (so fine details can be seen).

There are two ways to manipulate light to our advantage:

Refraction and Reflection

1. Magnification

Magnification = Focal Length of Primary Mirror / Focal Length of Eyepiece

M = F / f

(Same equation as for Refractors)

3. Resolving an Image

Resolution Example

$\alpha = 2.5 \ x \ 10^5 \ \lambda \ / \ D$

Georgia Tech's 20-inch (= 0.5 m) telescope

 $\alpha = 2.5 \text{ x } 10^5 (500 \text{ x } 10^{-9} \text{ m}) / (0.5 \text{ m}) = 0.25 \text{ arcsec}$

The atmosphere limits all telescopes to a resolution of ~ 1.0 arcseconds.

Form	Formulae		
Magnification	M = F / f		
Light Gathering Ability	LGA $\propto R^2$ (or D^2)		
Resolution	$\alpha = 2.5 \text{ x } 10^5 \lambda \text{ / } D$		

Comparison

Lens	Two sides to grind and polish
Mirror	One side to grind and polish
Lens	Light must travel through the glass
Mirror	Light only interacts with the surface
Lens	Only supported around the edge
Mirror	Supported on back and sizes; therefore, larger

Formulae		
M = F / f		
LGA $\propto R^2$ (or D^2)		
$\alpha = 2.5 \text{ x } 10^5 \lambda \text{ / } D$		