RENAISSANCE ASTRONOMY

Questions

Just because there is a new theory, should I accept it?

Which comes first - a new Theory or new Data?

Tycho Brahe

Tycho Brahe
 [1546-1601]

Tycho worked for the Danish King Frederick II, who built him an observatory on the Baltic island of Hveen. There he spent 20 years obtaining accurate pre-telescopic astronomical observations of stars and planets. Tycho was both arrogant and extravagant. He had a "falling out" with the new King Christian IV, so he left Denmark for Prague. [Tycho lost his nose in a duel.]

Observations by Tycho Brahe

A. Comets were thought to be atmospheric vapors, but no parallax (triangulation) angle was observed for a bright one seen during 1577.

Tycho concluded that the comet was 3 times the Moon's distance and that it revolved around the Sun.

Observations by Tycho Brahe

B. Observed a supernova.
C. Obtained 1-arcminute accuracy of stellar and planetary positions.
D. Obtained continuous records of the Sun, Moon, and planets.

He also developed a Cosmological Model, but only he believed in it.

Johannes Kepler

Johannes Kepler

[1571-1630, Germany]
Learned the Copernican heliocentric hypothesis. He was a mathematics and astronomy teacher at Graz, Austria, but the power of the Catholic Church forced him (a Protestant) to leave.

He became an assistant to Tycho, who wanted Kepler to develop a theory to describe planetary motion, but he never gave Kepler full access to the necessary data. After Tycho's death, Kepler got it all.

Orbit of Mars

First he tried circles, equants, ovals, etc. Finally, after years, he tried an ellipse. Found that the orbit of Mars is an ellipse with the Sun at a focus.

The sum of the distances to the two foci is always constant for all points on the ellipse. Ellipses are described by their semi-major axis and by their eccentricity. $\quad \mathrm{e}=(\Delta$ foci $/$ major axis $)$

Kepler's Three Laws

1. All planets have elliptical orbits with the Sun at a focus (conic sections).

2. Law of Equal Areas: Equal areas are swept out in equal time intervals.

Kepler's Three Laws

3. Harmonic Law (published in The Harmony of the Worlds):

$$
\mathbf{P}^{2}=\mathbf{k} a^{3},
$$

where $\mathrm{k}=1$ if P is in earth years and a is in AUs.

table 4-3	A Demonstration of Kepler's Third Law			
	Sidereal period \boldsymbol{P} (years)	Semimajor axis $\boldsymbol{a}(\mathrm{AU})$	$\boldsymbol{P}^{\mathbf{2}}$	\boldsymbol{a}^{3}
Planet	0.24	0.39	0.06	0.06
Mercury	0.61	0.72	0.37	0.37
Venus	1.00	1.00	1.00	1.00
Earth	1.88	1.52	3.53	3.51
Mars	11.86	5.20	140.7	140.6
Jupiter	29.46	9.54	867.9	868.3
Saturn	84.01	19.19	7,058	7,067
Uranus	64.79	30.06	27,160	27,160
Neptune	248.54	39.53	61,770	61,770
Pluto				

