PROBLEM SET 1 SOLUTIONS

Physics 2021

1. $\quad \tau=14 \times 10^{9}$ years $\times 365.25$ days $/$ year $\times 24 \mathrm{hr} /$ day $\times 60 \mathrm{~mm} / \mathrm{hr} \times 60 \mathrm{sec} / \mathrm{min}$ $=4.42 \times 10^{17}$ seconds
2. $\quad 1.4 \mathrm{deg} \times 60 \operatorname{arcmin} / \mathrm{deg}=84 \operatorname{arcmin}$
$84 \operatorname{arcmin} \times 60 \operatorname{arcsec} / \operatorname{arcmin}=5040 \operatorname{arcsec}$
3. $d=206,265(D / \alpha)$
a. $\quad d=206,265[(2.6 \mathrm{~cm}) /(3600 \operatorname{arcsec} / \mathrm{deg})]=150 \mathrm{~cm}=1.50 \mathrm{~m}$
b. $\quad \mathbf{d}=206,265[(2.6 \mathrm{~cm}) /(60 \operatorname{arcsec} / \mathrm{deg})]=8938 \mathrm{~cm}=89.4 \mathrm{~m}$
c. $\quad d=206,265[(2.6 \mathrm{~cm}) /(1 \operatorname{arcsec} / \mathrm{deg})]=536,290 \mathrm{~cm}=4363 \mathrm{~m}$
4. $d=50,000 \mathrm{~m} \quad \alpha=20 \operatorname{arcsec}$
$D=\alpha d / 206,265=(20 \operatorname{arcsec})(50,000 \mathrm{~m}) /(206,265 \operatorname{arcsec})=4.8 \mathrm{~m}$
5. Latitude $=40^{\circ} \mathrm{N} \quad$ Sun is at $-\mathbf{2 3 . 5}{ }^{\circ} \mathrm{N}$

Distance from the zenith is $\mathbf{4 0 . 0} \mathbf{- (- 2 3 . 5)}=\mathbf{6 3 . 5}{ }^{\circ}$
Altitude from the horizon is $\mathbf{9 0 . 0} \mathbf{- 6 3 . 5}=\mathbf{2 6 . 5}{ }^{\circ}$
6. In the northern hemisphere the Sun appears toward the south and in the southern hemisphere the Sun appears toward the north. The houses are designed to admit as much sunlight as possible.
7. At $\mathbf{1 9}^{\circ}$ north latitude the Sun is on the zenith at midday twice during the year because its latitude is less than 23.5°.
8. It rises 4 minutes earlier each day, so in one week it rises $7 \times 4=28$ minutes sooner, which is at 8:02 pm.

