PROBLEM SET 5 SOLUTIONS Physics 2021

1. $\quad \mathrm{d}=\mathrm{ct}=\left(3 \times 10^{5} \mathrm{~km} / \mathrm{s}\right)(4 \mathrm{hr})(3600 \mathrm{sec} / \mathrm{hr})=4.3 \times 10^{9} \mathrm{~km}$
2. $\quad \mathbf{c}=\mathrm{f} \lambda \quad \lambda=\mathrm{c} / \mathrm{f}=\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(\mathbf{3 \times 1 0 ^ { 1 6 } / \mathrm { s })}=1 \times 10^{-8} \mathrm{~m}=10 \mathrm{~nm}\right.$ (X-ray)
3. $\quad F_{s} \propto 1 / d_{s}{ }^{2} \quad F_{e} \propto 1 / d_{e}{ }^{2}$
$F_{s} / F_{e}=d_{e}{ }^{2} / d_{s}{ }^{2}=(1 / 10)^{2}=0.01$ times as strong
4. $v=-20,000 \mathrm{~km} / \mathrm{s} \quad \lambda=500 \mathrm{~nm}$
$\mathbf{v} / \mathbf{c}=\Delta \lambda / \lambda=\left(\lambda_{\text {obs }}-\lambda\right) / \lambda$
$(-20,000 \mathrm{~km} / \mathrm{s}) /(\mathbf{3 \times 1 0} \mathbf{~ k m} / \mathrm{s})=\left(\lambda_{\text {obs }}-500 \mathrm{~nm}\right) / 500 \mathrm{~nm}$
$\left(\lambda_{\text {obs }}-500 \mathrm{~nm}\right)=-33.3 \mathrm{~nm} \quad \lambda_{\text {obs }}=466.7 \mathrm{~nm}$
5. $\Delta \lambda / \lambda=v / c$
$(486.112-486.133) / 486.133=v /\left(3 \times 10^{5} \mathrm{~km} / \mathrm{s}\right)$
$v=-\mathbf{1 3 . 0} \mathbf{k m} / \mathrm{s} \quad$ Toward us - the observed wavelength has been shortened.
6. $\mathrm{v} / \mathrm{c}=\Delta \lambda / \lambda \quad \lambda_{0}=700 \mathrm{~nm}$ (Red) $\quad \lambda=500 \mathrm{~nm}$ (Green)
$v=\Delta \lambda / \lambda \quad c=[(500-700) /(700)]\left(3 \times 10^{5} \mathrm{~km} / \mathrm{s}\right)$ $=-8.6 \times 10^{4} \mathrm{~km} / \mathrm{s}=-\mathbf{8 6 , 0 0 0} \mathrm{km} / \mathrm{s}$
