PROBLEM SET 12 SOLUTIONS

 Physics 20211. Mass of All Planets $=0.055+0.815+1.0+0.107$

$$
+317.9+95.2+14.5+17.1+0.002=446.679 \text { earth masses }
$$

Mass of Jupiter = 317.9 earth masses
Percentage $=317.9 / 446.679=71.2 \%$
2. Volume \propto Radius 3 (or diameter if used in a ratio)

Volume $_{\text {S }} /$ Volume $_{\mathrm{E}}=(9.54 / 1.0)^{3}=868 \mathrm{X}$
3. Compute the mass of Jupiter using Almathea's orbit.

	Almathea
Period (days)	$\mathbf{0 . 4 9 8 2}$
Period (years)	$\mathbf{1 . 3 6 4 \times 1 0 ^ { - 3 }}$
Distance (km)	$\mathbf{1 8 1 , 3 6 5}$
Distance (AU)	$\mathbf{1 . 2 0 9 \times 1 0 ^ { - 3 }}$
Mass (solar)	$\mathbf{9 . 5 0 0 \times 1 0 ^ { - 4 }}$
Mass (kg)	$\mathbf{1 . 9 0 \times 1 0 ^ { 2 7 }}$
Mass (earth)	$\mathbf{3 1 8 . 1}$

4. $\quad R_{\text {Jupiter }}=71,492 \mathrm{~km}=7.15 \times 10^{5} \mathrm{~km}$

$$
C=2 \pi R=2 \pi\left(7.15 \times 10^{5} \mathrm{~km}\right)=4.49 \times 10^{5} \mathrm{~km}
$$

Rotation rate $=9^{\mathrm{h}} \mathbf{5 0}^{\mathrm{m}} \mathbf{2 8}=3.54 \times 10^{4} \mathrm{~s}$

$$
\mathrm{v}=\left(4.49 \times 10^{5} \mathrm{~km}\right) /\left(3.54 \times 10^{4} \mathrm{~s}\right)=12.7 \mathrm{~km} / \mathrm{s}
$$

5. \quad Diameter $_{\text {RedSpot }}=2.5$ Diameter $_{\text {Earth }}=2.5 \times 12,750=32,000 \mathrm{~km}$

$$
C=100,000 \mathrm{~km} \quad \text { Period }=5.5 \text { days }=4.752 \times 10^{5} \mathrm{~s}
$$

Velocity $=100,000 \mathrm{~km} /\left(4.752 \times 10^{5}\right.$ seconds $)=0.21 \mathrm{~km} / \mathrm{s}=760 \mathrm{~km} / \mathrm{hr}$
6. Saturn's orbital eccentricity varies its distance from the Sun and the time it takes to move in its orbit (via Kepler's Second Law).
7. Outer edge $a=136,600 \mathrm{~km}=9.11 \times 10^{-4} \mathrm{AU} \quad \mathcal{M}=2.86 \times 10^{-4}$ solar mass

Inner edge $\quad a=92,000 \mathrm{~km}=6.13 \times 10^{-4} \mathrm{AU}$

Outer edge $\quad \mathbf{P}=1.626 \times 10^{-3} \mathbf{y r}=0.594$ day $=14.25$ hours
Inner edge $\quad \mathbf{P}=8.974 \times 10^{-4} \mathbf{y r}=\mathbf{0 . 3 2 8}$ day $=7.87$ hours
The rotation of Saturn is $\mathbf{1 0 . 2}$ hours. The outer edge drifts eastward; the inner one goes westward.
8. $\quad a=1.335 \times 10^{5} \mathrm{~km} / 1.5 \times 10^{8} \mathrm{~km} / \mathrm{AU}=8.9 \times 10^{-4} \mathrm{AU}$
$\boldsymbol{M}=2.86 \times 10^{-4}$ solar mass

$$
\begin{aligned}
\mathbf{P}^{2}=\mathrm{a}^{3} / \mathcal{M}= & \left(8.9 \times 10^{-4}\right)^{3} /\left(2.86 \times 10^{-4}\right)=2.466 \times 10^{-6} \\
& \mathbf{P}=1.57 \times 10^{-3} \mathrm{yr}= \\
& 0.574 \text { days } \\
& \text { Pan } \\
& 0.573 \text { days } / 0.574=1 / 1 \\
& \text { Tethys } \\
& 1.888 / 0.574=3 / 1
\end{aligned} \text { (approximately) }
$$

Problem 4 is worth 1 point;
Problems 1, 2, and 5 are worth 2 points each.
Problem 3 is worth 3 points.

