Binary Stars

Key Characteristics

About half of all stars are binary or multiple star systems

Key Fundamentals

Binary Stars

Used to determine stellar masses

Used to determine stellar diameters

Major Types of Binary Stars

Visual Binaries

Spectroscopic Binaries

Eclipsing Binaries

Visual Binaries

Visual Binaries

Visual Binaries are Resolved

Skinny Triangle Approximation

$$
\mathrm{D}=\mathrm{d} \tan \theta
$$

Resolution

$$
\begin{aligned}
& \qquad \alpha=2.5 \times 10^{5} \lambda / \mathrm{D} \\
& \text { Example: } \quad \text { GT } 20 \text {-inch telescope }
\end{aligned}
$$

$\alpha=2.5 \times 10^{5}\left(500 \times 10^{-9} \mathrm{~m}\right) /(0.5 \mathrm{~m})=0.25 \operatorname{arcsec}$
The atmosphere limits all telescopes to a resolution of ~ 1.0 arcseconds.

Shapes of Orbits

First Kepler tried circles, equants, ovals, etc. Finally, after years, he tried an ellipse. Found that the orbit of Mars is an ellipse with the Sun at a focus.

The sum of the distances to the two foci is always constant for all points on the ellipse. Ellipses are described by their semi-major axis and by their eccentricity. $e=$ (Δ foci / major axis $)$

Kepler's Three Laws

1. All planets have elliptical orbits with the Sun at a focus (conic sections).

2. Law of Equal Areas:

Equal areas are swept out in equal time intervals.

Kepler's Three Laws

3. Harmonic Law (published in The Harmony of the Worlds):

$$
\mathbf{P}^{2}=\mathbf{k} \mathbf{a}^{3}
$$

where $k=1$ if P is in earth years and a is in AUs.

table 4-3 Planet	A Demonstration of Kepler's Third Law			
	Sidereal period P (years)	$\begin{gathered} \text { Semimajor axis } \\ a(\mathrm{AU}) \end{gathered}$	P^{2}	a^{3}
Mercury	0.24	0.39	0.06	0.06
Venus	0.61	0.72	0.37	0.37
Earth	1.00	1.00	1.00	1.00
Mars	1.88	1.52	3.53	3.51
Jupiter	11.86	5.20	140.7	140.6
Saturn	29.46	9.54	867.9	868.3
Uranus	84.01	19.19	7,058	7,067
Neptune	64.79	30.06	27,160	27,160
Pluto	248.54	39.53	61,770	61,770

Modification of Kepler's Laws

All orbiting bodies have a conic-section orbit, with the massive body (i.e., the Sun) at a focus.

Modification of Kepler's Laws

Strong pull required

a Ball moves at a high speed in a small circle

b Ball moves at a low speed in a large circle

Law of Equal Areas: Equal areas are swept out in equal time intervals.
This is explained by Conservation of Angular Momentum.

$$
r_{1} v_{1}=r_{2} v_{2}
$$

Modification of Kepler's Laws

The Third Law needs to have the sum of the masses included.

$$
(\mathcal{M}+m) \mathbf{P}^{2}=\mathbf{k} \mathbf{a}^{3},
$$

where $\mathrm{k}=1$ if P is in earth years, a is in AUs , and $(\mathcal{M}+m)$ is in solar masses.

$$
\text { For objects orbiting the Sun, }(\mathcal{M}+m)=1
$$

Visual Binaries

Kepler's 3rd Law

$$
\left(\mathscr{M}_{1}+\mathcal{M}_{2}\right) \mathrm{P}^{2}=\mathrm{a}^{3}
$$

\mathscr{M} is in solar masses
P is in years, and
a is in Astronomical Units
(1 AU = mean Earth-Sun distance)

Kepler's Third Law Interactive

Resolution Improvements

Speckle Techniques

Resolutions to 0.02 arcsec

Interferometric Techniques
Resolutions to 0.001 arcsec

Spectroscopic Binaries

Conservation of Angular Momentum

$$
\mathscr{M}_{1} / M_{2}=v_{2} / v_{1}\left(=r_{2} / r_{1}\right)
$$

Doppler Shift

$$
\Delta \lambda / \lambda=v / c
$$

Eclipsing Binaries

Unresolved - appear as a single star
Orbital plane lies close to our line-of-sight

Partial Eclipse

Diameters of Stars

$$
\mathrm{L}=4 \pi \mathrm{R}^{2} \sigma \mathrm{~T}^{4}
$$

$L \propto R^{2} T^{4}$

Mass-Luminosity Relationship

$$
\begin{gathered}
\mathrm{L} \propto \mathcal{M}^{4.0} \\
0.08 \text { solar }<\mathcal{M}^{<}<50 \text { solar }
\end{gathered}
$$

