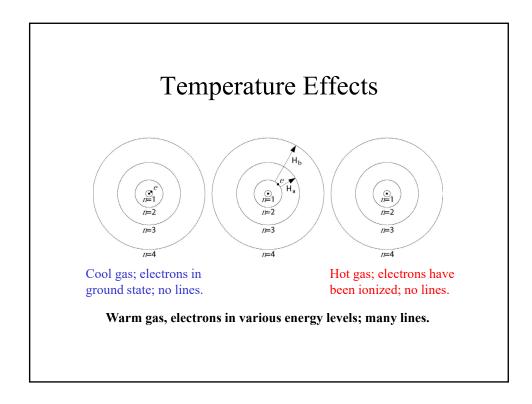
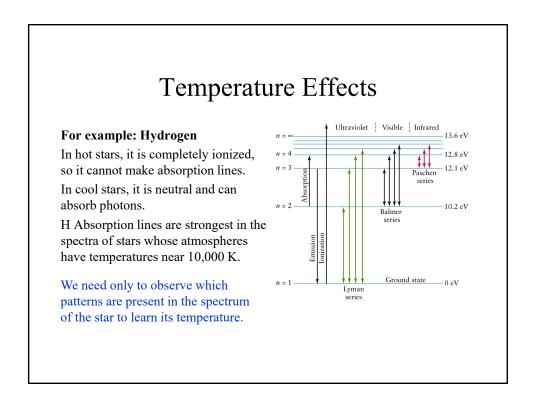
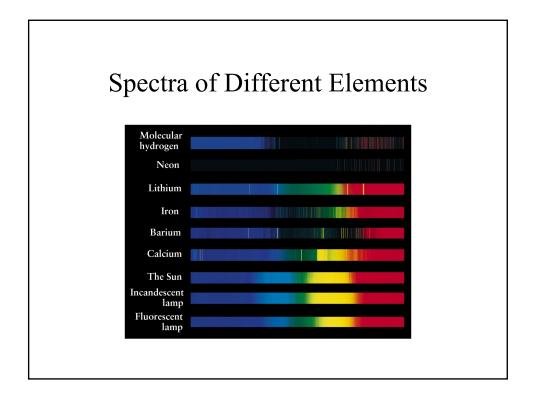
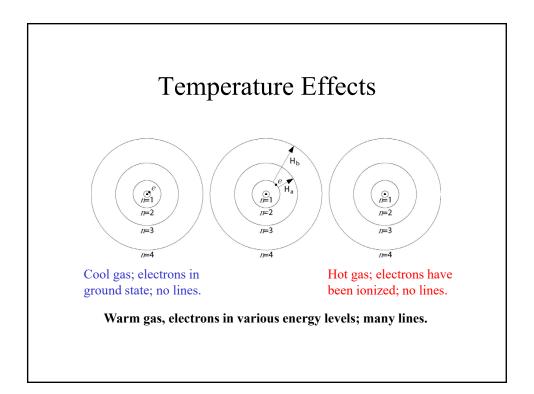
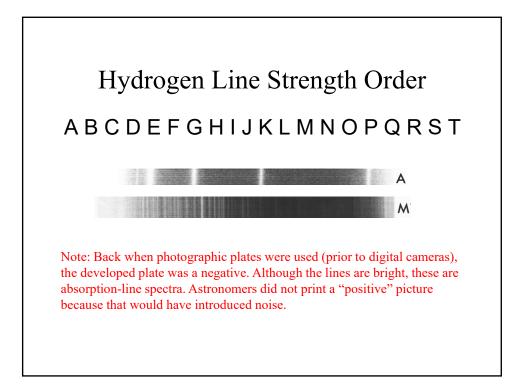

Early Classifications

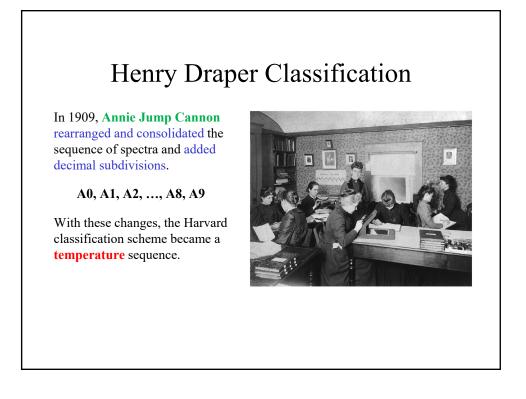

In 1823, Joseph Fraunhofer observed that stars have spectra that are characterized by dark lines crossing a continuous band of color. William Huggins, in 1864, first identified some of the lines in stellar spectra with those of known terrestrial elements.

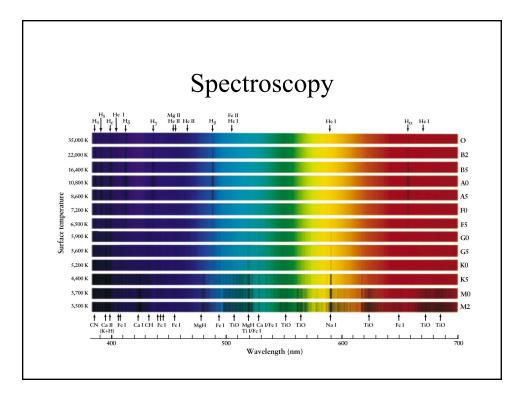


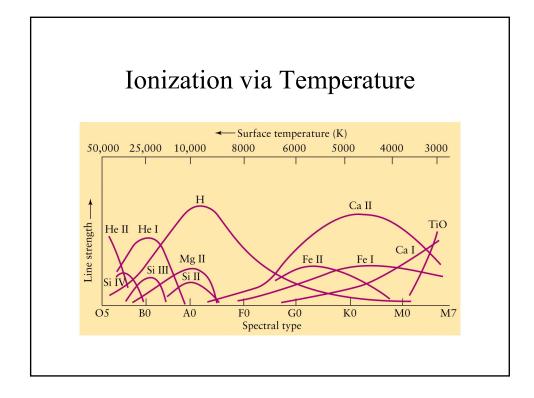


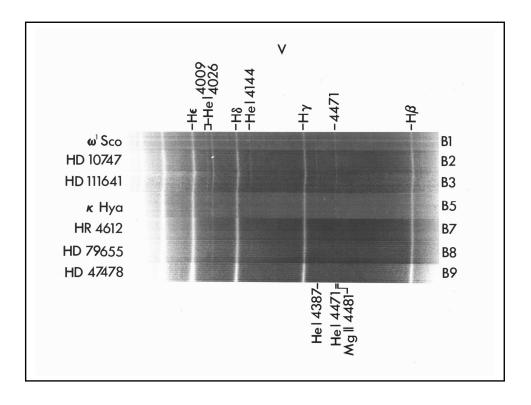


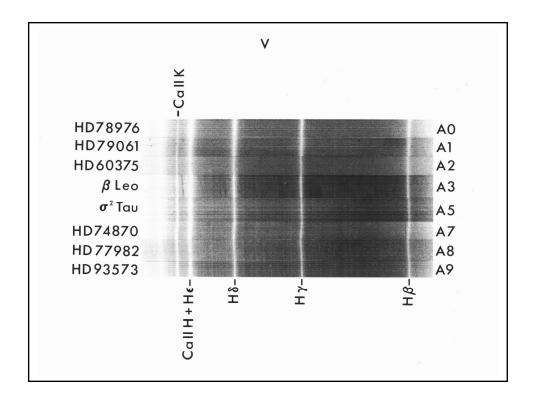


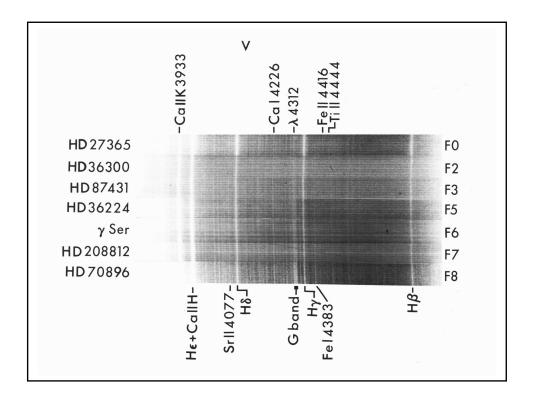


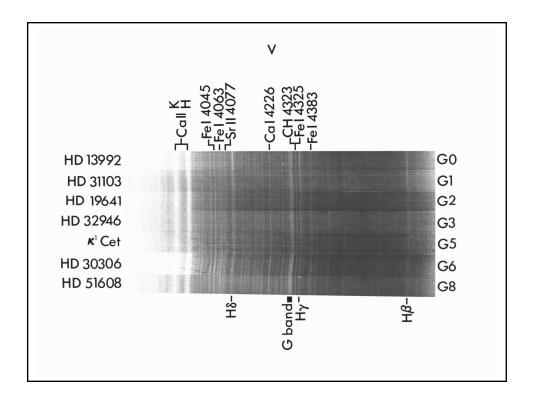


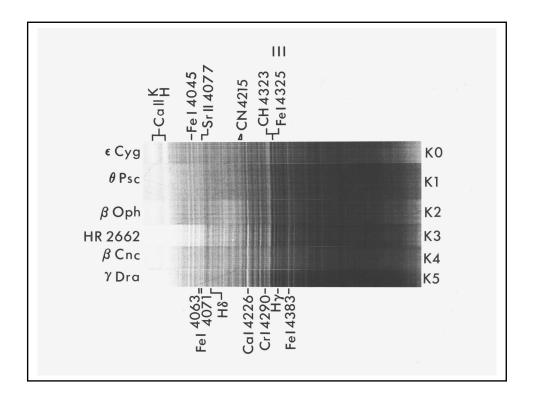


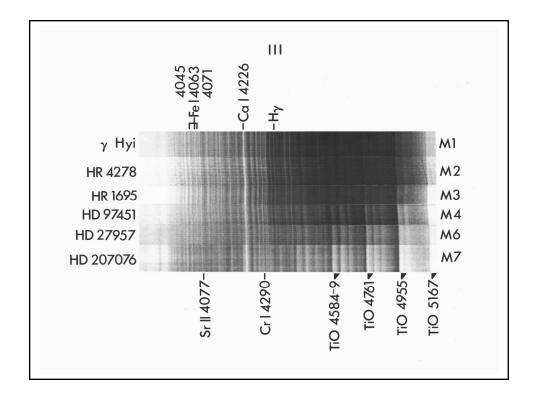


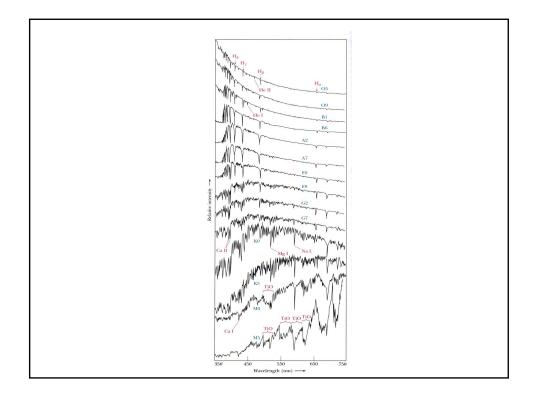


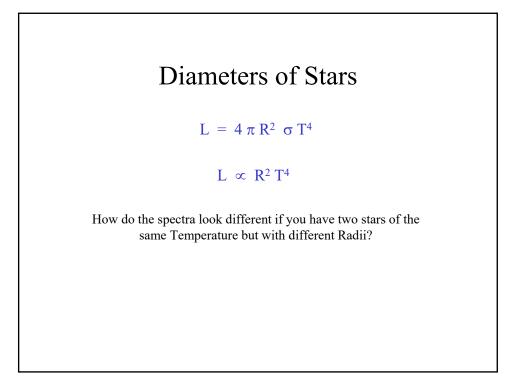


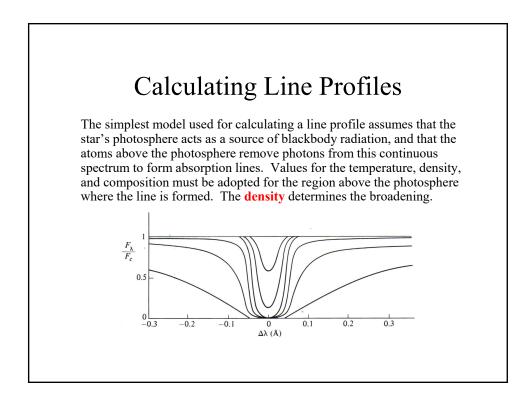


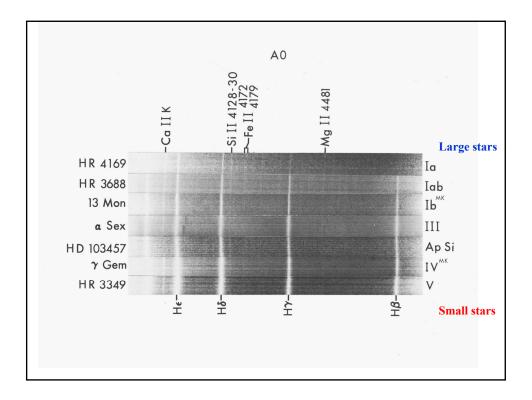

Spectral Sequence								
table 19-2	The Spectral Sequence							
Spectral class	Color	Temperature (K)	Spectral lines	Examples				
0	Blue-violet	30,000-50,000	Ionized atoms, especially helium	Naos (ζ Puppis), Mintaka (δ Orionis)				
В	Blue-white	11,000-30,000	Neutral helium, some hydrogen	Spica (α Virginis), Rigel (β Orionis)				
A	White	7500-11,000	Strong hydrogen, some ionized metals	Sirius (α Canis Majoris), Vega (α Lyrae)				
F	Yellow-white	5900-7500	Hydrogen and ionized metals such as calcium and iron	Canopus (α Carinae), Procyon (α Canis Minoris)				
G	Yellow	5200-5900	Both neutral and ionized metals, especially ionized calcium	Sun, Capella (α Aurigae)				
К	Orange	3900-5200	Neutral metals	Arcturus (α Boötis), Aldebaran (α Tauri)				
М	Red-orange	2500-3900	Strong titanium oxide and some neutral calcium	Antares (α Scorpii), Betelgeuse (α Orionis)				
L	Red	1300-2500	Neutral potassium, rubidium, and cesium, and metal hydrides	Brown dwarf Teide 1				
Т	Red	below 1300	Strong neutral potassium and some water (H ₂ O)	Brown dwarf Gliese 229B				











Spectral Sequence							
table 19-2	The Spectral Sequence						
Spectral class	Color	Temperature (K)	Spectral lines	Examples			
0	Blue-violet	30,000-50,000	Ionized atoms, especially helium	Naos (ζ Puppis), Mintaka (δ Orionis)			
В	Blue-white	11,000-30,000	Neutral helium, some hydrogen	Spica (α Virginis), Rigel (β Orionis)			
A	White	7500-11,000	Strong hydrogen, some ionized metals	Sirius (α Canis Majoris), Vega (α Lyrae)			
F	Yellow-white	5900-7500	Hydrogen and ionized metals such as calcium and iron	Canopus (α Carinae), Procyon (α Canis Minoris)			
G	Yellow	5200-5900	Both neutral and ionized metals, especially ionized calcium	Sun, Capella (α Aurigae)			
К	Orange	3900-5200	Neutral metals	Arcturus (α Boötis), Aldebaran (α Tauri)			
М	Red-orange	2500-3900	Strong titanium oxide and some neutral calcium	Antares (α Scorpii), Betelgeuse (α Orionis)			
L	Red	1300-2500	Neutral potassium, rubidium, and cesium, and metal hydrides	Brown dwarf Teide 1			
Т	Red	below 1300	Strong neutral potassium and some water (H ₂ O)	Brown dwarf Gliese 229B			

				Table of Cold							
				Iat	ole c	DI C	0	lor	S		
H8	18 BRIGHT STARS, J1998.5										
Fl	Flamsteed/Bayer Designation		HR No.	Right Ascension	Declination	Notes	V	U-B	B-V	Spectral Type	
	1000	0."	1000	h m s	0 / //		1.00	0.00	0.00	A0p Si	
11	v1032 η^2	Ori Pic	1638 1663	5 04 29.0 5 04 55.7	$+15 24 08 \\ -49 34 47$	fv fv	4.68 5.03	-0.09 + 1.88	-0.06 + 1.49	K5 III	
2	η- ε	Lep	1654	5 05 23.9	-22 22 23	fv	3.19	+1.00 +1.78	+1.49 +1.46	K4 III	
~	ζ	Dor	1674	5 05 29.1	-57 28 29	f	4.72	-0.04	+0.52	F7 V	
10	η	Aur	1641	5 06 24.6	+41 13 57	fv	3.17	-0.67	-0.18	B3 V	
67	β	Eri	1666	5 07 46.5	- 5 05 18	fvd	2.79	+0.10	+0.13	A3 IVn	
69	λ	Eri	1679	5 09 04.5	- 8 45 21	fv	4.27	-0.90	-0.19	B2 IVn	
16		Ori	1672	5 09 14.7	+ 9 49 40	fvmd6	5.43		+0.24	A9m	
3	L	Lep	1696	5 12 13.7	-11 52 15	ď	4.45	-0.40	-0.10	B9 V:	
5	μ	Lep	1702	5 12 51.8	$-16\ 12\ 26$	fsv	3.31	-0.39	-0.11	B9p Hg Mn	
4	κ	Lep	1705	5 13 09.7	-12 56 36	d7	4.36	-0.37	-0.10	B7 V	
17	ρ	Ori	1698	5 13 12.7	+25134	vd67	4.46	+1.16	+1.19	K1 III CN 0.5	
11	μ	Aur	1689	5 13 19.5	+38 28 58	f	4.86	+0.09	+0.18	A7m	
	θ	Dor	1744	5 13 45.5	-67 11 13	f	4.83	+1.39	+1.28	K2.5 IIIa	
19	β	Ori	1713	5 14 27.9	- 8 12 12	fsvd6	0.12	-0.66	-0.03	B8 Ia	
13	α	Aur	1708	5 16 34.7	+45 59 48	fcvd67	0.08	+0.44	+0.80	G6 III + G2 III	
	0	Col	1743	5 17 25.8	-345348	f	4.83	+0.80	+1.00	K0/1 III/IV	
20	τ	Ori	1735	5 17 32.0	- 6 50 45	fsd6	3.60	-0.47	-0.11	B5 III	
15	λ	Aur	1729	5 19 02.1	$+40\ 05\ 52$	fd	4.71	+0.12	+0.63	G1.5 IV-V Fe-1	
	C	Pic	1767	5 19 19.9	-50 36 27	f	5.45	+0.01	+0.51	F7 III–IV	

What We Learn Via Spectroscopy

- A. Temperature
- B. Pressure
- C. Radius
- D. Luminosity
- E. Chemical Composition
- F. Radial Velocity
- G. Turbulence
- H. Magnetic Fields
- I. Shells and Ejected Gases