THE SKY

Questions

How do we orient objects in the sky?

How do we find objects on the moving sky?

What about the moving objects?

How is the Earth (and how are humans)
affected by the sky?

Observations and Theories

The Ancient Greeks and Egyptians developed theories to explain their observations. However, they maintained several postulates (e.g., circular motion), which prevented a truly impartial theory.

A. Geocentric Cosmology

1. Earth appears to be flat.
2. Celestial Sphere appears to be above the Earth.
3. Celestial Sphere moves around the Earth.

Most stars are fixed.
Stars rise in East, set in the West.

Observations and Theories

B. Wandering Stars

Sun, Moon, Mercury, Venus, Mars, Jupiter, Saturn
C. The Sun's Motion

Sun travels on the ecliptic. There is a 4 minute difference per day of the Sun's position against the stars. The angle between the Earth's orbit and the Earth's rotation axis is 23° (obliquity).
D. Zodiac along the Ecliptic

Constellations are groups of stars. Today, there 88.

Questions

How far away is Mars?

How big is the Andromeda Galaxy?

Distances

Many people find the Heavens to be incomprehensible because of the great range in sizes and distances. Even astronomers have a difficult time coming to grips with quantities like the distance from the Earth to the Sun when it is expressed as $93,000,000$ miles $(150,000,000 \mathrm{~km})$. The way to comprehend sizes and distances is to use meaningful measurement units.

Distances

Here is an example. The distance from my house in Atlanta to my parents’ house north of Nashville is about $\mathbf{1 7 , 7 4 0 , 0 0 0}$ inches - the number is correct but it is completely meaningless because we do not have a real-world feel for numbers that large.

I could state that the distance is about $\mathbf{2 8 0}$ miles. The number 280 is just on the verge of our ability to comprehend its magnitude.

An even better way of relating the distance between the houses is to say it takes me 4 hours to drive from one to the other. In expressing it that way, two things have happened: (1) the quantity of 4 hours is easily comprehensible and (2) the measurement units were switched from distance to time. Hopefully by this change in measurement units, you get a better feel for the distance between these two homes.

What is a Good Distance Unit?

Astronomers recognized the need for better distance measurement units in the Solar System, Galaxy, and the Universe, since the mile is just too short to be useful. The unit for the Solar System is based on the average distance from the Earth to the Sun.

Instead of using 93 million miles (150 million km), this distance is defined as equal to 1 and is called the Astronomical Unit (AU).

$$
1 \mathrm{AU}=1.5 \times 10^{8} \mathrm{~km}
$$

With this relative scale, we would say that the distance from the Sun to Mercury is 0.4 AU , to Mars it is 1.6 AU , to Jupiter it is 5.2 AU , and to Pluto it is on average about 40 AU .

Scale of the Solar System

Scale (cont.)

Note the spacing of the outer planets - much larger than the football field.

PLANET	DISTANCE		DIAMETER		MASS
	$(\mathbf{A U)}$	$(\mathbf{y d})$	$(\mathbf{E}=\mathbf{1})$	$(\mathbf{m m})$	$(\mathbf{E}=\mathbf{1})$
Mercury	0.39	10	0.38	1	0.06
Venus	0.72	18	0.95	2	0.81
Earth	1.00	25	1.00	2	1.00
Mars	1.52	37	0.53	1	0.11
Jupiter	5.20	128	11.20	22	317.8
Saturn	9.54	235	9.41	18	94.3
Uranus	19.18	472	4.11	8	14.6
Neptune	30.06	740	3.81	7	17.2
Pluto	39.44	971	0.17	0	0.01

Question

How far to the nearest star?

If the Sun is the size of a basketball, the next nearest basketball would be in
\qquad

What About Angles on the Sky?

Measuring Angles

Circle
360° in Circumference

Angular Measurements

$$
\begin{gathered}
\text { Skinny Triangle } \\
\tan \alpha=\mathrm{D} / \mathrm{d} \\
\text { [Diameter / distance] } \\
\alpha=\mathrm{D} / \mathrm{d} \text { (radians) }
\end{gathered}
$$

Universe by Freedman, Geller, and Kaufmann

Local Coordinates

Relative to the Observer

Zenith is a point directly over-head. Meridian is a line through the Poles and Zenith.

Star Positions
Azimuth is angle from North
Altitude is angle from Horizon

Celestial Coordinates

Celestial Poles are above the North \& South Poles.

Celestial Equator is directly above the Earth's Equator.

Star Positions
Longitude $=$ Right Ascension (α)
Latitude $=$ Declination (δ)

H8
BRIGHT STARS, J1998.5

Flamsteed/BayerDesignation			$\begin{aligned} & \text { HR } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Right } \\ \text { Ascension } \end{gathered}$	Declination	Notes	V	$U-B$	$B-V$	Spectral Type
11	v1032	Ori	1638	$\begin{array}{ccc} \hline \text { h m } & \text { s } \\ 504 & 29.0 \end{array}$	$\begin{array}{r} \circ \\ +15 \\ +154 \\ \hline 108 \end{array}$	fv	4.68	-0.09	-0.06	A0p Si
	η^{2}	Pic	1663	50455.7	-49 3447	fv	5.03	+1.88	+1.49	K5 III
2	e	Lep	1654	50523.9	-222223	fv	3.19	11.78	11.46	K4 III
	ζ	Dor	1674	50529.1	-572829	f	4.72	-0.04	$+0.52$	F7 V
10	η	Aur	1641	50624.6	+411357	fv	3.17	-0.67	-0.18	B3 V
6769	β	Eri	1666	50746.5	- 50518	fvd	2.79	+0.10	$+0.13$	A3 IVn
	λ	Eri	1679	50904.5	-84521	fv	4.27	-0.90	-0.19	B2 IVn
163		Ori	1672	50914.7	+94940	fvmd6	5.43		$+0.24$	A9m
	ι	Lep	1696	51213.7	-115215	d	4.45	-0.40	-0.10	B9 V:
5	μ	Lep	1702	51251.8	-161226	fsv	3.31	-0.39	-0.11	B9p Hg Mn
1711	κ	Lep	1705	51309.7	-125636	d7	4.36	-0.37	-0.10	B7 V
	ρ	Ori	1698	51312.7	+ 25134	vd67	4.46	+1.16	+1.19	K1 III CN 0.5
	μ	Aur	1689	51319.5	+382858	f	4.86	+0.09	+0.18	A7m
	${ }_{\theta}$	Dor	1744	51345.5	-671113	f	4.83	+1.39	+1.28	K2.5 IIIa
19	β	Ori	1713	51427.9	-81212	fsvd6	0.12	-0.66	-0.03	B8 Ia
13	α	Aur	1708	51634.7	+455948	fcvd67	0.08	+0.44	$+0.80$	G6 III + G2 III
	-	Col	1743	51725.8	-345348		4.83	$+0.80$	+1.00	K0/1 III/IV
2015	τ	Ori	1735	51732.0	-65045	fsd6	3.60	-0.47	-0.11	B5 III
	λ	Aur	1729	51902.1	+400552	fd	4.71	+0.12	$+0.63$	G1.5 IV-V Fe-1
	c	Pic	1767	51919.9	-503627	f	5.45	+0.01	$+0.51$	F7 III-IV

Motions in the Sky

Motions

Two Motions

Rotation - The spinning of a body around its axis (one day).

Revolution - The orbital motion of a body around another due to Gravity (one year).

Diurnal Motion

Universe by Freedman, Geller, and Kaufmann

Effects Due to Rotation

Gives us Night and Day.

Causes the Sun and Stars to rise in the East and set in the West.

If there was no Revolution, then each night sky would be the same.

Seasonal Changes

Effects Due to Revolution

Gives us the Year.

Has a role in producing the Seasons, which are not due to a change in distance.

Universe by Freedman, Geller, and Kaufmann

Path of the Sun

The Earth's tilt (obliquity) of 23.5° is what causes the Sun's path not to be on the Celestial Equator.

Yearly Solar Motion

The Year

Julian Calendar	Problem is that
46 BC	1 year $=365.2422$ days
1 year $=365.2500$ days	

1 leap day is added if the year is
(a difference of $11^{\mathrm{m}} 14^{\mathrm{s}}$) evenly divisible by 4 .

Think about it - Should the year and day be nicely linked?

Think about it - Should this difference cause a problem?

The Year (cont)

Gregorian Calendar AD 1582
Easter's Date had shifted

Two Adjustments
Removed 10 days
Oct $4 \boldsymbol{\rightarrow}$ Oct 15, 1582

The Leap Year

If the year is evenly divisible by 4 ,
Yes, unless

If the year is evenly divisible by 100 ,
No, unless

If the year is evenly divisible by 400 ,
Yes

The Day

Solar Day
If there was only the Rotation of the Earth, then the day would be

$$
=24^{\mathrm{h}} 00^{\mathrm{m}} 00^{\mathrm{s}}
$$

Think about it - this would be the time from one crossing of the Meridian to the next crossing by the Sun. (am \& pm)

The Day (cont.)

Universe by Freedman, Geller, and Kaufmann

Sidereal Day

But the Earth is also Revolving while it is Rotating, so with respect to the background stars, one day

$$
=23^{\mathrm{h}} 56^{\mathrm{m}} 04^{\mathrm{s}}
$$

Think about it - there are 360° in a circle and there are 365.25 days in a year.

Phases of the Moon

View from High Above the Earth's North Pole

Phase depends only on the orientation of the Moon to the Earth and Sun.

It does not matter what time of day it is.

For example, the Moon is Full at position 3 whether it is noon or midnight on the Earth.

All Lunar Phases

Times of Day

The time of day depends solely on the altitude of the Sun.

中
The Moon plays no role in establishing the time.

For example, it can be midnight, and the phase of the Moon can be anything.

Phases \& Times

Eclipses

Lunar

Solar

Inclination of Moon's Orbit

Conditions for Eclipses

Geometry of Lunar Eclipses

A Total Lunar Eclipse

January 20-21, 2019 (Sunday)

Event
Penumbral Eclipse begins
Partial Eclipse begins (*)
Full Eclipse begins (*)
Maximum Eclipse
Full Eclipse ends
Partial Eclipse ends
Penumbral Eclipse ends

Time

Jan 20 at 9:36 PM
Jan 20 at 10:34 PM
Jan 20 at 11:41 PM
Jan 21 at 12:12 AM
Jan 21 at 12:43 AM
Jan 21 at 1:50 AM
Jan 21 at 2:48 AM
\dagger The Moon is above the horizon during this eclipse, so with good weather conditions in Atlanta, the entire eclipse is visible.

Geometry of Solar Eclipses

A Total Solar Eclipse

A Total Solar Eclipse

Eclipse Paths

Key Individuals

Pythagoras [d. 497 BC, Italy]
Aristotle [384-322 BC]
Aristarchus of Samos [310-230 BC]
Eratosthenes [276-195 BC, Alexandria, Egypt]
Hipparchus [160-127 BC, Alexandria, Egypt]
Claudius Ptolemy (or Ptolemaeus) [AD 140]

Hipparchus [160-127 BC]

He cataloged 850 stars by position and by magnitude

