## SOLUTION SET 7

Physics 2022

1. $L^{*}=1000 L_{\text {sun }} \quad T_{*}^{*}=100,000 \mathrm{~K} \quad T_{\text {sun }}=5800 \mathrm{~K}$

$$
\begin{gathered}
\mathbf{L}^{*} / L_{\text {sun }}=\left(\mathbf{R}_{*} / \mathbf{R}_{\text {sun }}\right)^{2}\left(\mathrm{~T}_{*} / \mathrm{T}_{\text {sun }}\right)^{4} \\
1000=\left(\mathbf{R}_{*} / \mathbf{R s u n}\right)^{2}(\mathbf{1 0 0 , 0 0 0} / \mathbf{5 8 0 0})^{4} \\
\left(\mathbf{R}_{*} / \mathbf{R}_{\text {sun }}\right)^{2}=\mathbf{1 . 1 3 \times 1 0 ^ { - 2 }} \\
\mathbf{R}^{*}=\mathbf{0 . 1 1} \mathbf{R}_{\text {sun }}
\end{gathered}
$$

2. $v=20 \mathrm{~km} / \mathrm{s}$

$$
\mathrm{d}=2,700 \mathrm{LY}
$$

$$
\theta=1.2 \operatorname{arcmin}=72 \operatorname{arcsec}
$$

$$
\mathrm{d}=2,700 \mathrm{LY}(1 \mathrm{pc} / 3.26 \mathrm{LY})=828 \mathrm{pc}
$$

$R=d \tan \theta=(828 \mathrm{pc})(206,265 \mathrm{AU} / \mathrm{pc})\left(1.5 \times 10^{8} \mathrm{~km} / \mathrm{AU}\right) \tan [(72 / 2) / 3600]$
$=4.5 \times 10^{12} \mathrm{~km} \quad$ Radius because half of the angle was used.
$t=D / v=\left(4.5 \times 10^{12} \mathrm{~km}\right) /(20 \mathrm{~km} / \mathrm{s})=2.2 \times 10^{11} \mathrm{sec}=6970 \mathrm{yr}$

3a. $\quad \lambda_{\max }=0.0029 / T=0.0029 / 30,000=9.67 \times 10^{-8} \mathrm{~m}=96.7 \mathrm{~nm}$
3b. Because of Wien's Law, much more light is being emitted in the X-ray because the temperature of the White Dwarf is $\mathbf{3 0 , 0 0 0} \mathrm{K}$ but temperature of its companion is about $10,000 \mathrm{~K}$.
4. $\mathscr{M}=1.0 \mathcal{M}_{\text {sun }}=2 \times 10^{30} \mathrm{~kg} \quad \mathrm{R}^{*}=\mathrm{R}_{\text {earth }}=6378 \mathrm{~km}$

$$
\rho=\mathcal{M} / \mathrm{V}=\left(2 \times 10^{33} \mathrm{~g}\right) /(4 \pi / 3)\left(6378 \times 10^{5} \mathrm{~cm}\right)^{3}=1.84 \times 10^{6} \mathrm{~g} / \mathrm{cm}^{3}
$$

5. Radius $=0.1 \mathrm{~m} \quad$ Density $=10^{6} \mathrm{~g} / \mathrm{cm}^{3}$

$$
\begin{aligned}
& \text { Volume }=4 / 3 \pi \mathrm{R}^{3}=4 / 3 \pi(10 \mathrm{~cm})^{3}=4.2 \times 10^{3} \mathrm{~cm}^{3} \\
& \begin{aligned}
\text { Mass } & =\text { Volume } \times \text { Density }=\left(4.2 \times 10^{3} \mathrm{~cm}^{3}\right) \times\left(10^{6} \mathrm{~g} / \mathrm{cm}^{3}\right) \\
& =4.2 \times 10^{9} \mathrm{~g}=4.2 \times 10^{6} \mathrm{~kg}=4,200 \text { metric tons }
\end{aligned}
\end{aligned}
$$

6. $\Delta m=20^{m}=2.5 \log \left(l_{1} / l_{2}\right) \quad \quad l_{1} / l_{2}=10^{8}$
7. $d=425 \mathrm{LY}(/ 3.26 \mathrm{LY} / \mathrm{pc})=120 \mathrm{pc}$

$$
\begin{aligned}
m-M & =5 \log (d / 10) \\
m & =5 \log (120 / 10)+(-17)=-11.6 \mathrm{mag}
\end{aligned}
$$

8. Because the spectrum showed Si lines, it is a Type Ia supernova. Therefore, the peak absolute magnitude is $M=-19$ mag.

$$
\begin{aligned}
& m-M=5 \log (d / 10) \\
& 16.5-(-19)=35.5=5 \log (\mathrm{~d} / 10) \\
& 7.1=\log (\mathrm{d} / 10) \\
& \quad \mathrm{d}=1.3 \times 10^{8} \mathrm{pc}=130 \mathrm{Mpc}
\end{aligned}
$$

