SOLUTION SET 7 Physics 2022

1. $L^* = 1000 L_{sun}$ $T^* = 100,000 K$ $T_{sun} = 5800 K$ $L^* / L_{sun} = (R^* / R_{sun})^2 (T^* / T_{sun})^4$ $1000 = (R^* / R_{sun})^2 (100,000 / 5800)^4$ $(R^* / R_{sun})^2 = 1.13 \times 10^{-2}$ $R^* = 0.11 R_{sun}$

2.
$$v = 20 \text{ km/s}$$
 $d = 2,700 \text{ LY}$ $\theta = 1.2 \text{ arcmin} = 72 \text{ arcsec}$
 $d = 2,700 \text{ LY} (1\text{pc} / 3.26 \text{ LY}) = 828 \text{ pc}$
 $R = d \tan \theta = (828 \text{ pc}) (206,265 \text{ AU/pc})(1.5 \text{ x} 10^8 \text{ km/AU}) \tan [(72/2)/3600]$
 $= 4.5 \text{ x} 10^{12} \text{ km}$ Radius because half of the angle was used.
 $t = D / v = (4.5 \text{ x} 10^{12} \text{ km}) / (20 \text{ km/s}) = 2.2 \text{ x} 10^{11} \text{ sec} = 6970 \text{ yr}$

3a.
$$\lambda_{max} = 0.0029 / T = 0.0029 / 30,000 = 9.67 \times 10^{-8} m = 96.7 nm$$

- **3b.** Because of Wien's Law, much more light is being emitted in the X-ray because the temperature of the White Dwarf is 30,000 K but temperature of its companion is about 10,000 K.
- 4. $\mathcal{M} = 1.0 \mathcal{M}_{sun} = 2 \times 10^{30} \text{ kg}$ $R_* = R_{earth} = 6378 \text{ km}$ $\rho = \mathcal{M} / V = (2 \times 10^{33} \text{ g}) / (4 \pi / 3) (6378 \times 10^5 \text{ cm})^3 = 1.84 \times 10^6 \text{ g/cm}^3$
- 5. Radius = 0.1 m Density = 10^6 g/cm^3

Volume = $4/3 \pi R^3 = 4/3 \pi (10 \text{ cm})^3 = 4.2 \text{ x } 10^3 \text{ cm}^3$

Mass = Volume x Density = $(4.2 \times 10^3 \text{ cm}^3) \times (10^6 \text{ g/cm}^3)$

= $4.2 \times 10^9 \text{ g}$ = $4.2 \times 10^6 \text{ kg}$ = 4,200 metric tons

6.
$$\Delta m = 20^m = 2.5 \log (l_1 / l_2)$$
 $l_1 / l_2 = 10^8$

7.
$$d = 425 LY (/3.26 LY/pc) = 120 pc$$

 $m - M = 5 log (d / 10)$
 $m = 5 log (120 / 10) + (-17) = -11.6 mag$

8. Because the spectrum showed Si lines, it is a Type Ia supernova. Therefore, the peak absolute magnitude is M = -19 mag.

m - M =
$$5 \log (d / 10)$$

16.5 - (-19) = $35.5 = 5 \log (d / 10)$
7.1 = $\log (d / 10)$
d = $1.3 \times 10^8 \text{ pc} = 130 \text{ Mpc}$